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Interactive Design and Visualization of Branched Covering Spaces
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Fig. 1. Two branched covering spaces (BCS) generated using our design system: (left) a three-fold covering of the torus visualized
using depth peeling [4] and (right) a 100-fold covering of the double torus using connecting tubes (Section 4.2.2). Our system enables
researchers new to tensor field topology and quadrangular remeshing to develop geometric understanding of important properties of
the BCSs.

Abstract—Branched covering spaces are a mathematical concept which originates from complex analysis and topology and has
applications in tensor field topology and geometry remeshing. Given a manifold surface and an N-way rotational symmetry field, a
branched covering space is a manifold surface that has an N-to-1 map to the original surface except at the ramification points, which
correspond to the singularities in the rotational symmetry field. Understanding the notion and mathematical properties of branched
covering spaces is important to researchers in tensor field visualization and geometry processing, and their application areas. In this
paper, we provide a framework to interactively design and visualize the branched covering space (BCS) of an input mesh surface
and a rotational symmetry field defined on it. In our framework, the user can visualize not only the BCSs but also their construction
process. In addition, our system allows the user to design the geometric realization of the BCS using mesh deformation techniques as
well as connecting tubes. This enables the user to verify important facts about BCSs such as that they are manifold surfaces around
singularities, as well as the Riemann-Hurwitz formula which relates the Euler characteristic of the BCS to that of the original mesh.
Our system is evaluated by student researchers in scientific visualization and geometry processing as well as faculty members in
mathematics at our university who teach topology. We include their evaluations and feedback in the paper.

Index Terms—Tensor field topology, math visualization, branched covering spaces visualization, rotational symmetries, ramification
points

1 INTRODUCTION

The branched covering space is a mathematical concept in topology
which has found applications in tensor field topology and remeshing.

Tricoche [28] describes the behavior of a degenerate point in a 2D
symmetric tensor field defined on some domain by converting the tensor
field into a vector field, defined on the branched covering space of the
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domain, and by studying the behavior of the singularity in the vector
field that corresponds to the degenerate point in the tensor field.

In geometry processing, the problem of quadrangular remeshing, i.e.,
the generation of a mesh of quads from an input triangle mesh with a
guiding directional field, has gained much attention [5]. In quadrangular
remeshing, the edges in the quads are often required to be approximately
aligned with a given cross field that is usually derived from the principal
curvature directions in the underlying surface. To prevent T-junctions
from occurring in the quad mesh, Kälberer et al. [13] propose to lift the
cross field in the input mesh to a vector field on the four-fold branched
covering space of the surface. They then perform Hodge-decomposition
to remove the divergence-free part of the vector field, thus preventing
T-junctions in the remesh. Campen et al. [8] generate a coarse quad
layout for the quadrangulation of a triangle surface with a cross field
by computing crossing loops on the branched covering space. This
leads to robust generation of quad layouts which facilitates pure-quad
remeshing. Nieser et al. [17] perform hexahedral remeshing by also
using the notion of branched covering spaces, this time of a volume
and a 3D frame field.

The concept of branched covering spaces, which we will refer to
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as BCS in the remainder of the paper, is important to researchers in
the fields of tensor field visualization and remeshing. However, our
experience is that it can be difficult for graduate student researchers in
visualization and geometry processing to fully grasp the concept and
important mathematical properties of the BCSs.

Mathematically, a BCS is the extension of the concept of covering
space, with the additional notion of ramification points. While this
addition can seem minor, the behaviors of a BCS are significantly
more complex than that of a covering space and thus more difficult
to understand. The additional complication of the BCSs has led to
misconceptions such as that the BCS of a manifold surface is no longer a
manifold surface due to the presence of ramification points. In addition,
given an input surface and its branched cover, their topologies are
linked by the Riemann-Hurwitz formula which depends on the number
and type of ramification points. While this formula makes it possible
to predict the topology of the BCS given an input surface and an N-
way rotational symmetry field defined on it, developing an intuitive
understanding of the Riemann-Hurwitz formula is a challenging task.

Existing research that requires some visual descriptions of a BCS [13,
28] often does so with hand-drawn illustrations of some patch on the
BCS, usually around a ramification point. Moreover, such illustrations
are usually in the form of static images, using shapes with relatively
simple geometry and topology. Our experience with student researchers
new to quad remeshing suggests a need to not only see the BCSs but
also interact with them for models with more complex structures than a
sphere or a torus.

There has been relatively little research in the construction and visu-
alization of BCSs. Nieser et al. [16] develop an algorithm to construct
the BCSs of a holomorphic function defined on the complex plane.
They also develop a visualization technique of the BCSs by replicating
the complex plane a number of times, placing them in parallel posi-
tions in 3D, and connecting them in the vicinity of ramification points.
However, a naive adaptation of this approach to an arbitrary surface
with complex geometry and topology is inadequate, due to the large
amount of self-intersections in the BCS as demonstrated in Figure 1
(left). Moreover, while the topology of the BCS is determined by the
topology of the input surface and the guiding rotational symmetry field,
the geometric realization of the BCS has many degrees of freedom.

In this paper, we introduce an interactive design and visualization
system for the BCSs given an arbitrary 3D surface and an N-way
rotational symmetry field defined on it. Our system allows the user to
not only visualize the BCS and the lifted vector field interactively with
a number of options but also design the geometric realization of the
BCS. To overcome the difficulties associated with self-intersections in
the BCS, we introduce a method to connect different layers in the BCS
using tubes that connect through docking stations (Section 4.2.2). We
also allow the user to examine the neighborhood around a ramification
point or a group of ramification points as well as that of a handle in the
BCS through mesh deformation and animation. These techniques make
it possible to visualize a number of important mathematical properties
of a BCS, such as:

1. An N-way rotational symmetry (N-RoSy) field on the input mesh
leads to an N-fold branched covering space of the original mesh.

2. The singularities in the N-RoSy field become the ramification
points of the BCS.

3. Away from the ramification points, every point in the original
mesh corresponds to N points in the BCS, each of which is as-
signed one of the vectors in the N-RoSy at the base point.

4. If the input mesh represents a manifold surface, then the BCS is
also a manifold surface, i.e., the points in the BCS corresponding
to a ramification point are manifold points.

5. The index of a singularity in the vector field on the BCS of the
mesh is decided by the index of the corresponding singularity in
the N-RoSy field.

6. Riemann-Hurwitz formula, which states that the Euler characteris-
tic of the BCS is related to that of the base surface and the number
of ramification points in the BCS.

7. The BCS is independent of the way the base mesh was cut open.

8. Any closed orientable surface with at least one handle is a two-
fold cover for the sphere.

We also introduce the notion of essential cut graph, which is a
minimal subgraph of the cut graph that is needed for BCS construction.
Moreover, by investigating the structure of the essential cut graph,
we are able to compute the correct structure in the docking station
(Section 4.2.2).

We have conducted a user study in which graduate students in com-
puter science as well as faculty members in mathematics evaluated our
system. We report their evaluation in Section 10.

2 RELATED WORK

The notion of branched covering spaces is first introduced into computer
graphics in the context of quadrangular remeshing of surfaces [13].

Alliez et al. [1] point out the importance of quadrangular remeshing
from a triangular mesh where the edges of the quads in the remesh
follow the principal curvature directions of the underlying surface.
To generate such a mesh, they adapt the evenly-spaced streamline
placement approach by Jobard and Lefer [12] for vector fields to define
the curvature tensor field of the surface. Ray et al. [21] point out that the
distortion in the resulting quad mesh can be greatly reduced if the quads
in the mesh are oriented according to the curvature tensor field, which
has two mutually perpendicular directions (major and minor principal
directions), and can be modeled as a four-way rotational symmetry
(i.e., a cross). They further point out the difficulties associated with the
singularities in the rotational symmetry field. Palacios and Zhang [18]
provide a rotational symmetry field design system, with the ability
to control the number and location of the singularities in any N-way
rotational symmetry field for any N ≥ 1. Ray et al. [22] introduce a
mathematically rigorous algorithm that generates a smooth, per-face
N-way rotational symmetry field given desired index and location of
singularities in the mesh also for an arbitrary N ≥ 1. Still, approaches
such as tracing streamlines following an N-way rotational symmetry
field will lead to T-junctions, leading to quad-dominant but not pure
quad meshes.

Kälberer et al. [13] employ a global parameterization approach
to quadrangulation that can eliminate T-junctions. The core of their
approach is to lift the N-way rotational symmetry field on the input
surface to a vector field on the branched covering space and then
remove the divergence-free part in the vector field through Hodge-
decomposition [20, 27]. This approach is reformulated into a mixed-
integer quadrangulation approach [6]. Nieser et al. [15] apply a similar
approach, but with 6-RoSy fields, to produce high-quality triangular
meshes with control over the irregular vertices. Campen et al. [8] also
use the notion of branched covering spaces to compute a coarse quad
layout for the quadrangulation of a triangle mesh with a cross field.

In scientific visualization, the notion of branched covering spaces
has been introduced by Xavier Tricoche [28] to explain the behaviors of
the degenerate points in 2D symmetric tensor fields. These behaviors
are understood by lifting the tensor field locally to a vector field on its
branched covering space and examining the behavior of the singularity
in the vector field corresponding to the degenerate point in the tensor
field. A number of researchers [3, 16, 29] have constructed and visual-
ized branched covering spaces where the base surface is the complex
plane. While all this work provides an algorithm to construct the BCS
of the complex plane (topologically a sphere minus the point ∞), it is not
clear how such an approach can be extended to the surfaces of higher
geometric and topological complexities without leading to a significant
amount of self-intersections. Moreover, none of the branched covering
space work provides the ability to design the geometric realization of
the branched covering spaces.

In our work, we provide an interactive design and visualization
system in which the branched covering space can be constructed for

high-genus surfaces and surfaces with high geometric complexities.
In addition, anticipating potential applications of N-RoSy fields (N is
not 1, 2, 4, or 6) in hyperbolic geometry, our system handles N-RoSy
fields with an arbitrary N ≥ 1. The user can design the geometric
realization of the BCS, which allows the inspection of local behaviors
around ramification points as well as handles. To overcome difficulties
associated with a relatively large amount of self-intersections in the
BCS, we also provide an approach in which the layers are connected
through thin tubes as well as topological constructions we call “docking
stations”. This approach greatly reduces the amount of visual self-
overlaps. In addition, we enhance the construction algorithm by using
the concept of essential cut graph, which is a subset of the cut graph that
existing BCS construction algorithms use to cut the mesh open. The
essential cut graph not only reduces the computational cost during the
BCS construction stage, but also is essential in enabling our tube-based
visualization technique (Section 4.2.2).

3 MATHEMATICAL BACKGROUND

In this section we review the background on (BCS). BCS is an extension
of the notion of covering spaces, which we describe next [2].

Definition 1. Let X be a topological space. A covering space of X
is a topological space C together with a continuous surjective map:
p : C → X such that for every x ∈ X, there exists an open neighborhood
U of x, such that p−1(U) is a union of disjoint sets in C, each of which
is mapped homeomorphically onto U by p. The map p is called the
covering map, the space X is the base space of the covering, and the
space C is called the total space of the covering. The pre-image of x is
a set of discrete points in C, which are referred to as the fiber over x.
The neighborhood U is referred to as an evenly covered neighborhood.
Each homeomorphic copy in C of U is a sheet over U.

An example covering space is R1, which provides an infinite cover

of S1 (the unit circle in R2) through the map: p(θ) =
(

cosθ
sinθ

)
. Here

S1 is the base space, while R1 is the total space.
A BCS extends the notion of covering spaces as follows:

Definition 2. Let X and C be two topological spaces and p : C → X
be continuous surjective map. C is said to be a branched covering
space of X under p if there exists a nowhere dense set ∆ ⊂ X such that
p|p−1(X\∆) : p−1(X \∆)→ X \∆ is a covering mapping. The set X \∆
is a regular set of the branched covering p, whereas ∆ is the singular
set.

In the above definition “\” denotes set difference while “|” refers
to when a function is restricted to a subset of its domain. Note that
every covering mapping is also a branched covering mapping with an
empty singular set. A less trivial example is R which covers the set
of non-negative numbers R+ under the map: p : R→ R+ (p(x) = |x|).
The singular set consists of the number 0 which has only one pre-image
under p while other elements in R+ have two pre-images.

In geometry remeshing and tensor field topology, the branched cov-
ering mappings are usually induced from an input N-RoSy field on
some base surface S.

Definition 3. An N-RoSy is a set of N-vectors s =

{
(

Rcos(θ + 2kπ
N )

Rsin(θ + 2kπ
N )

)
| 0 ≤ k ≤ N − 1}. An N-RoSy field is a

continuous N-RoSy valued function on the surface. A singularity in an
N-RoSy field is a point in the domain where R = 0.

A singularity can be characterized by its singularity index, which is
defined in terms of the winding numbers and is a multiple of 1

N .
Given an input surface S and an N-RoSy field defined on it, a

branched covering space can be constructed that lifts the N-RoSy field
to a vector field on the BCS in the following sense: (1) every regular
point p in S corresponds to N points in the BCS, and (2) the collection
of the vectors at points in the BCS that correspond to p is exactly the

(a) (b)

Fig. 2. A 4-RoSy field with one pair of singularities on the torus (left) leads
to a covering space (right). Notice that the four directions at a point in the
base mesh (left) are maintained by the four vectors, each at one of the
corresponding points in the BCS (right). While static LIC images cannot
convey the vector directions well, please see the supplementary video
for dynamic flows that clearly differentiate between flows in opposite
directions (e.g., corresponding points in top torus and bottom torus of
(b)).

N-RoSy at p. The singularities in the N-RoSy field correspond to rami-
fication points in the BCS, where the map between the base surface and
the BCS has fewer-than-N pre-images. Figure 2 shows such a scenario
when S is a torus with a 4-RoSy field with two singularities. Each
singularity in the N-RoSy field is transformed into a ramification point
in the BCS.

Branched covering spaces have a number of important properties:

1. A branched covering space is a manifold surface if the base
surface is a manifold.

2. Every singularity of index k in the N-RoSy field is mapped to
a singularity of index Nk − (N − 1) in the vector field in the
branched covering space.

3. The Euler characteristic of the branched covering space is de-
scribed by the Riemann-Hurwitz formula [11]: χ(B) = N ·χ(S)−
∑p∈B(ep −1), where χ(B) and χ(S) are the Euler characteristics
of the branched covering space B and the base space S, respec-
tively; and the summation term is over the set of pre-images of
the singularity set where ep is the index of each ramification point
in the singularity set.

4. Every closed orientable surface with at least one handle is a two-
fold branched cover for the sphere.

In the next sections we will describe our algorithm for the construc-
tion and interactive design of the branched covering space given an
input surface with an N-RoSy field. In addition, we will provide details
on a number of visualization and interaction techniques that allow users
to gain intuitions about the aforementioned mathematical properties.

4 BRANCHED COVERING SPACES CONSTRUCTION

In this section, we describe the construction of the BCS given an input
orientable manifold surface represented by a triangular mesh with a
per-face N-RoSy field defined on it. That is, there is an N-RoSy defined
on each face. Our algorithm consists of four stages. First, we compute
the essential cut graph (Section 4.1) G on the input surface M and the
gap for each edge in G, which is an integer between 0 and N −1 that
describes how the vectors on different layers are assigned and how the
layers are connected during the BCS construction process (Figure 3).

Second, we cut M open along G to obtain M′. Third, we replicate M′

so that there are N layers M0,M1, ...,MN−1, each of which is identical
to M′. We then assign appropriate vector values at each face of each
layer. Fourth, we connect M0,M1,MN−1 along their edges based on the
gap computed for G, thus ensuring a manifold surface with a continuous
vector field. Figure 3 illustrates this with an example.
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as BCS in the remainder of the paper, is important to researchers in
the fields of tensor field visualization and remeshing. However, our
experience is that it can be difficult for graduate student researchers in
visualization and geometry processing to fully grasp the concept and
important mathematical properties of the BCSs.

Mathematically, a BCS is the extension of the concept of covering
space, with the additional notion of ramification points. While this
addition can seem minor, the behaviors of a BCS are significantly
more complex than that of a covering space and thus more difficult
to understand. The additional complication of the BCSs has led to
misconceptions such as that the BCS of a manifold surface is no longer a
manifold surface due to the presence of ramification points. In addition,
given an input surface and its branched cover, their topologies are
linked by the Riemann-Hurwitz formula which depends on the number
and type of ramification points. While this formula makes it possible
to predict the topology of the BCS given an input surface and an N-
way rotational symmetry field defined on it, developing an intuitive
understanding of the Riemann-Hurwitz formula is a challenging task.

Existing research that requires some visual descriptions of a BCS [13,
28] often does so with hand-drawn illustrations of some patch on the
BCS, usually around a ramification point. Moreover, such illustrations
are usually in the form of static images, using shapes with relatively
simple geometry and topology. Our experience with student researchers
new to quad remeshing suggests a need to not only see the BCSs but
also interact with them for models with more complex structures than a
sphere or a torus.

There has been relatively little research in the construction and visu-
alization of BCSs. Nieser et al. [16] develop an algorithm to construct
the BCSs of a holomorphic function defined on the complex plane.
They also develop a visualization technique of the BCSs by replicating
the complex plane a number of times, placing them in parallel posi-
tions in 3D, and connecting them in the vicinity of ramification points.
However, a naive adaptation of this approach to an arbitrary surface
with complex geometry and topology is inadequate, due to the large
amount of self-intersections in the BCS as demonstrated in Figure 1
(left). Moreover, while the topology of the BCS is determined by the
topology of the input surface and the guiding rotational symmetry field,
the geometric realization of the BCS has many degrees of freedom.

In this paper, we introduce an interactive design and visualization
system for the BCSs given an arbitrary 3D surface and an N-way
rotational symmetry field defined on it. Our system allows the user to
not only visualize the BCS and the lifted vector field interactively with
a number of options but also design the geometric realization of the
BCS. To overcome the difficulties associated with self-intersections in
the BCS, we introduce a method to connect different layers in the BCS
using tubes that connect through docking stations (Section 4.2.2). We
also allow the user to examine the neighborhood around a ramification
point or a group of ramification points as well as that of a handle in the
BCS through mesh deformation and animation. These techniques make
it possible to visualize a number of important mathematical properties
of a BCS, such as:

1. An N-way rotational symmetry (N-RoSy) field on the input mesh
leads to an N-fold branched covering space of the original mesh.

2. The singularities in the N-RoSy field become the ramification
points of the BCS.

3. Away from the ramification points, every point in the original
mesh corresponds to N points in the BCS, each of which is as-
signed one of the vectors in the N-RoSy at the base point.

4. If the input mesh represents a manifold surface, then the BCS is
also a manifold surface, i.e., the points in the BCS corresponding
to a ramification point are manifold points.

5. The index of a singularity in the vector field on the BCS of the
mesh is decided by the index of the corresponding singularity in
the N-RoSy field.

6. Riemann-Hurwitz formula, which states that the Euler characteris-
tic of the BCS is related to that of the base surface and the number
of ramification points in the BCS.

7. The BCS is independent of the way the base mesh was cut open.

8. Any closed orientable surface with at least one handle is a two-
fold cover for the sphere.

We also introduce the notion of essential cut graph, which is a
minimal subgraph of the cut graph that is needed for BCS construction.
Moreover, by investigating the structure of the essential cut graph,
we are able to compute the correct structure in the docking station
(Section 4.2.2).

We have conducted a user study in which graduate students in com-
puter science as well as faculty members in mathematics evaluated our
system. We report their evaluation in Section 10.

2 RELATED WORK

The notion of branched covering spaces is first introduced into computer
graphics in the context of quadrangular remeshing of surfaces [13].

Alliez et al. [1] point out the importance of quadrangular remeshing
from a triangular mesh where the edges of the quads in the remesh
follow the principal curvature directions of the underlying surface.
To generate such a mesh, they adapt the evenly-spaced streamline
placement approach by Jobard and Lefer [12] for vector fields to define
the curvature tensor field of the surface. Ray et al. [21] point out that the
distortion in the resulting quad mesh can be greatly reduced if the quads
in the mesh are oriented according to the curvature tensor field, which
has two mutually perpendicular directions (major and minor principal
directions), and can be modeled as a four-way rotational symmetry
(i.e., a cross). They further point out the difficulties associated with the
singularities in the rotational symmetry field. Palacios and Zhang [18]
provide a rotational symmetry field design system, with the ability
to control the number and location of the singularities in any N-way
rotational symmetry field for any N ≥ 1. Ray et al. [22] introduce a
mathematically rigorous algorithm that generates a smooth, per-face
N-way rotational symmetry field given desired index and location of
singularities in the mesh also for an arbitrary N ≥ 1. Still, approaches
such as tracing streamlines following an N-way rotational symmetry
field will lead to T-junctions, leading to quad-dominant but not pure
quad meshes.

Kälberer et al. [13] employ a global parameterization approach
to quadrangulation that can eliminate T-junctions. The core of their
approach is to lift the N-way rotational symmetry field on the input
surface to a vector field on the branched covering space and then
remove the divergence-free part in the vector field through Hodge-
decomposition [20, 27]. This approach is reformulated into a mixed-
integer quadrangulation approach [6]. Nieser et al. [15] apply a similar
approach, but with 6-RoSy fields, to produce high-quality triangular
meshes with control over the irregular vertices. Campen et al. [8] also
use the notion of branched covering spaces to compute a coarse quad
layout for the quadrangulation of a triangle mesh with a cross field.

In scientific visualization, the notion of branched covering spaces
has been introduced by Xavier Tricoche [28] to explain the behaviors of
the degenerate points in 2D symmetric tensor fields. These behaviors
are understood by lifting the tensor field locally to a vector field on its
branched covering space and examining the behavior of the singularity
in the vector field corresponding to the degenerate point in the tensor
field. A number of researchers [3, 16, 29] have constructed and visual-
ized branched covering spaces where the base surface is the complex
plane. While all this work provides an algorithm to construct the BCS
of the complex plane (topologically a sphere minus the point ∞), it is not
clear how such an approach can be extended to the surfaces of higher
geometric and topological complexities without leading to a significant
amount of self-intersections. Moreover, none of the branched covering
space work provides the ability to design the geometric realization of
the branched covering spaces.

In our work, we provide an interactive design and visualization
system in which the branched covering space can be constructed for

high-genus surfaces and surfaces with high geometric complexities.
In addition, anticipating potential applications of N-RoSy fields (N is
not 1, 2, 4, or 6) in hyperbolic geometry, our system handles N-RoSy
fields with an arbitrary N ≥ 1. The user can design the geometric
realization of the BCS, which allows the inspection of local behaviors
around ramification points as well as handles. To overcome difficulties
associated with a relatively large amount of self-intersections in the
BCS, we also provide an approach in which the layers are connected
through thin tubes as well as topological constructions we call “docking
stations”. This approach greatly reduces the amount of visual self-
overlaps. In addition, we enhance the construction algorithm by using
the concept of essential cut graph, which is a subset of the cut graph that
existing BCS construction algorithms use to cut the mesh open. The
essential cut graph not only reduces the computational cost during the
BCS construction stage, but also is essential in enabling our tube-based
visualization technique (Section 4.2.2).

3 MATHEMATICAL BACKGROUND

In this section we review the background on (BCS). BCS is an extension
of the notion of covering spaces, which we describe next [2].

Definition 1. Let X be a topological space. A covering space of X
is a topological space C together with a continuous surjective map:
p : C → X such that for every x ∈ X, there exists an open neighborhood
U of x, such that p−1(U) is a union of disjoint sets in C, each of which
is mapped homeomorphically onto U by p. The map p is called the
covering map, the space X is the base space of the covering, and the
space C is called the total space of the covering. The pre-image of x is
a set of discrete points in C, which are referred to as the fiber over x.
The neighborhood U is referred to as an evenly covered neighborhood.
Each homeomorphic copy in C of U is a sheet over U.

An example covering space is R1, which provides an infinite cover

of S1 (the unit circle in R2) through the map: p(θ) =
(

cosθ
sinθ

)
. Here

S1 is the base space, while R1 is the total space.
A BCS extends the notion of covering spaces as follows:

Definition 2. Let X and C be two topological spaces and p : C → X
be continuous surjective map. C is said to be a branched covering
space of X under p if there exists a nowhere dense set ∆ ⊂ X such that
p|p−1(X\∆) : p−1(X \∆)→ X \∆ is a covering mapping. The set X \∆
is a regular set of the branched covering p, whereas ∆ is the singular
set.

In the above definition “\” denotes set difference while “|” refers
to when a function is restricted to a subset of its domain. Note that
every covering mapping is also a branched covering mapping with an
empty singular set. A less trivial example is R which covers the set
of non-negative numbers R+ under the map: p : R→ R+ (p(x) = |x|).
The singular set consists of the number 0 which has only one pre-image
under p while other elements in R+ have two pre-images.

In geometry remeshing and tensor field topology, the branched cov-
ering mappings are usually induced from an input N-RoSy field on
some base surface S.

Definition 3. An N-RoSy is a set of N-vectors s =

{
(

Rcos(θ + 2kπ
N )

Rsin(θ + 2kπ
N )

)
| 0 ≤ k ≤ N − 1}. An N-RoSy field is a

continuous N-RoSy valued function on the surface. A singularity in an
N-RoSy field is a point in the domain where R = 0.

A singularity can be characterized by its singularity index, which is
defined in terms of the winding numbers and is a multiple of 1

N .
Given an input surface S and an N-RoSy field defined on it, a

branched covering space can be constructed that lifts the N-RoSy field
to a vector field on the BCS in the following sense: (1) every regular
point p in S corresponds to N points in the BCS, and (2) the collection
of the vectors at points in the BCS that correspond to p is exactly the

(a) (b)

Fig. 2. A 4-RoSy field with one pair of singularities on the torus (left) leads
to a covering space (right). Notice that the four directions at a point in the
base mesh (left) are maintained by the four vectors, each at one of the
corresponding points in the BCS (right). While static LIC images cannot
convey the vector directions well, please see the supplementary video
for dynamic flows that clearly differentiate between flows in opposite
directions (e.g., corresponding points in top torus and bottom torus of
(b)).

N-RoSy at p. The singularities in the N-RoSy field correspond to rami-
fication points in the BCS, where the map between the base surface and
the BCS has fewer-than-N pre-images. Figure 2 shows such a scenario
when S is a torus with a 4-RoSy field with two singularities. Each
singularity in the N-RoSy field is transformed into a ramification point
in the BCS.

Branched covering spaces have a number of important properties:

1. A branched covering space is a manifold surface if the base
surface is a manifold.

2. Every singularity of index k in the N-RoSy field is mapped to
a singularity of index Nk − (N − 1) in the vector field in the
branched covering space.

3. The Euler characteristic of the branched covering space is de-
scribed by the Riemann-Hurwitz formula [11]: χ(B) = N ·χ(S)−
∑p∈B(ep −1), where χ(B) and χ(S) are the Euler characteristics
of the branched covering space B and the base space S, respec-
tively; and the summation term is over the set of pre-images of
the singularity set where ep is the index of each ramification point
in the singularity set.

4. Every closed orientable surface with at least one handle is a two-
fold branched cover for the sphere.

In the next sections we will describe our algorithm for the construc-
tion and interactive design of the branched covering space given an
input surface with an N-RoSy field. In addition, we will provide details
on a number of visualization and interaction techniques that allow users
to gain intuitions about the aforementioned mathematical properties.

4 BRANCHED COVERING SPACES CONSTRUCTION

In this section, we describe the construction of the BCS given an input
orientable manifold surface represented by a triangular mesh with a
per-face N-RoSy field defined on it. That is, there is an N-RoSy defined
on each face. Our algorithm consists of four stages. First, we compute
the essential cut graph (Section 4.1) G on the input surface M and the
gap for each edge in G, which is an integer between 0 and N −1 that
describes how the vectors on different layers are assigned and how the
layers are connected during the BCS construction process (Figure 3).

Second, we cut M open along G to obtain M′. Third, we replicate M′

so that there are N layers M0,M1, ...,MN−1, each of which is identical
to M′. We then assign appropriate vector values at each face of each
layer. Fourth, we connect M0,M1,MN−1 along their edges based on the
gap computed for G, thus ensuring a manifold surface with a continuous
vector field. Figure 3 illustrates this with an example.
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On a high level, the four-step pipeline of our algorithm is similar to
that of Nieser et al. [16]. However, there are a number of differences
between the two approaches. Below we describe each step in detail
and highlight the difference between our approach and that of Nieser et
al. [16].

4.1 Essential Cut Graph Computation

Existing work in quad remeshing [6, 13] computes a cut graph G along
which the base surface S is cut into a topological disk. This is achieved
by region growing from a seed triangle, inside which a vector is selected
from the N-RoSy of the triangle. During the region growing process,
the chosen vector inside the seed triangle is parallel transported to the
rest of the triangles in the mesh, which is used to select a vector from
each of the remaining triangles to maximize vector field continuity
across the edges. The boundary of the region (a topological disk) is the
cut graph G, across which the selected vectors may not be consistent.
Figure 4 (top row) illustrates this with an example in which the best
match for the vector VA,0 from the triangle A is VB,1 in the triangle B.
The gap from A to B is 1 in this case, which means that during the
mesh stitching stage (Figure 4 (upper-right)), a duplicated triangle Ai is
stitched to Bi+1 mod 4. More precisely, the gap from a triangle A to an
adjacent triangle B is the j (0 ≤ j ≤ N−1) where VB, j is the best match
for VA,0. Existing work then computes the gap across edges in the cut
graph G. These algorithms then start the next stage of the pipeline, i.e.,
mesh cutting along the cut graph G. We observe that for the purpose of
BCS construction, it is unnecessary to cut the surface S along every edge
in G. This is because unlike quad meshing in which all cohomological
basis is needed, BCS construction only requires handles produced by
singularities in the field. Therefore, we only need to cut along the edges
in G where the gap is not zero. To see this, consider the example in the
bottom row of Figure 4. In this case Ai will be stitched with Bi, which
makes it unnecessary to cut the mesh open along the edge shared by

Fig. 3. Explanation of the construction process of branched covering
spaces.

Fig. 4. This figure illustrates the concept of gap and its use in deciding
how the layers are connected. In the left subfigure of the top row, the
chosen vectors (green) in triangles A and B are indexed 0. The gap
from A to B is 1 since the best matching vector in triangle B for VA,0 is
VB,1. Therefore, during the layer stitching stage (right in the top row), Ai
is stitched with Bi+1 mod 4. In contrast, the bottom row shows the case
when the gap from A to B is zero. In this case, Ai will be stitched with Bi.
Consequently, cutting the mesh open along the edge is unnecessary. We
remove edges with a zero gap from the cut graph to obtain an essential
cut graph, along which we cut the mesh open.

Fig. 5. The cut graph contains many edges over which the gap is 0
(black edges). The essential cut graph is a subgraph of the cut graph
that consists of only edges whose gap index is not zero (red).

A and B. We define an essential cut graph G′ to be a subgraph of a
cut graph G where only edges with a non-zero gap are kept. Figure 5
compares the cut graph and the essential cut graph with an example.
Essential cut graphs are minimal in the sense that removing any edge
from an essential cut graph will lead to a topologically incorrect BCS.
To extract the essential cut graph given a cut graph, we simply identify
all the edges in the cut graph with a non-zero gap. Note that cut graphs
are not unique given a surface and a RoSy field. Consequently, essential
cut graphs are also not unique. In Section 4.2.2, we will discuss how
the notion of essential cut graphs can be used to generate BCSs with
fewer self-intersections and provide a more geometrically intuitive
undertsanding behind the Riemann-Hurwitz formula.

Next we cut the mesh open along the essential cut graph computed in
the first stage and replicate the cut-open mesh N times. For a triangle in
the original mesh, its N-RoSy vectors are assigned to the corresponding
triangles in each duplicated layer based on the aforementioned layer
index. That is, the first vector is assigned to the triangle on the first
layer, and the second triangle to the second layer, and so on. This
results in a triangle mesh with N connected components and a vector
field. Our algorithm in these two steps (cutting and replication) does
not differ from existing work [16].

4.2 Layer Connection

In the last stage, we connect the N layers together to form the BCS.
Our system provides two options for this step.

The first option is the same as [16], which is essentially an inverse
process to the cutting stage except that there are more layers to stitch.
The layers are initially placed in the 3D space. Given an edge on the
original cut graph, the two triangles incident to the edge correspond

to 2N triangles in the replicated mesh. We will stitch triangle t1, j to
t2,L+ j mod N where L is the gap from triangle t1 to t2 and 0 ≤ j < N.
Once all the edges have been glued together, we remove redundant
vertices. This results in the BCS.

Note that stitching can introduce visual artifacts when the two lay-
ers to be stitched are relatively far apart. This is because the shared
vertices, regardless of their final locations, will lead to some triangle
with vertices located on both layers. While it is possible to place the
shared vertices in between the two layers, the problem can still be
visible. To remove such an artifact, ideally all the layers should be
co-located, i.e., each vertex in the BCS has the same 3D coordinates
as the corresponding vertex in the original input surface. However, in
this case the BCS is identical to the input surface visually since all the
layers are co-located.

To address these difficulties, we provide two approaches: mesh
deformation, and connecting tubes.

4.2.1 Layer Connection through Mesh Deformation
In the first approach, the user can use our BCS design system to place
the N layers anywhere in space with an arbitrary orientation and scal-
ing. Next, the edges along which stitching occurs are also placed in
space, usually between the layers. We then proceed to stitch the layers
along these edges. However, we wish to maintain the overall separation
among the layers while keeping their overall shape relatively unde-
formed so that they can be recognized as being similar to the base mesh
and to each other.

To achieve this, our system computes a set of triangles in the base
mesh that are relatively far away from the essential cut graph. These
triangles are usually obtained by first computing the distance of each
vertex in the base surface S to the essential cut graph and are selected
based on user-provided threshold. The corresponding triangles in the
layers will serve as hard constraints, along with the positions of the
edges corresponding to the essential cut graph. The positions of ver-
tices not defined by these hard constraints are then solved by Laplacian
smoothing [26] with the hard constraints serving as the boundary con-
dition.

The user can control the smoothness near the stitching by changing
the position and orientation of each layer, the position and orientation
of the edges to be stitched, and the number of triangles on each layer
that will serve as hard constraints.

4.2.2 Layer Connection with Connecting Tubes
While the mesh deformation approach can lead to high-quality BCSs,
such BCSs usually contain significant self-intersections which make
the understanding of the BCS structure rather challenging. We now
describe another approach which uses additional tubes to connect the
layers.

Recall that the topology of the BCS does not depend on the cut
graph. Consequently, given an N-RoSy field on the input surface, we
can generate an essential cut graph that facilitates our layer connection.
For educational purposes, we assume that no higher-order singularities
exist in the N-RoSy field, i.e. the index of every singularity is either
1
N or − 1

N . Let the Euler characteristic of the input surface be χ(S),
then the set of singularities in the N-RoSy field can be considered as
the disjoint union of two subsets. The first subset consists of |Nχ(S)|
singularities, each of which has an index of sign(χ(S)) 1

N . The second
set consists of 2M singularities (M ≥ 0), half of which have an index
of 1

N and the other half have an index of − 1
N .

Our algorithm allows the user to edit the essential cut graph that it can
not only shorten the total length of the edges in the essential cut graph
but also increase the connectivity of the cut graph so that it will have
|χ(S)|+M connected components. Each of the first |χ(S)| components
consists of N singularities from the first subset, while each of the
remaining M components consists of one positively-indexed singularity
and one negatively-indexed singularity from the second subset. In this
regard, the cut graph is further improved by connecting the singularity
pairs with curves on the mesh surface following a geodesic path [14].

For each of aforementioned connected components in the essential
cut graph, we will construct a docking station that is a terminal which

Fig. 6. An illustration of docking stations of different kinds. The docking
station highlighted in red on the left is a topological sphere to which the
tubes are connected. Others marked in blue are of higher genus.

helps in connecting the layers with tubes for each of the components of
the essential cut graph.

Figure 6 shows the two types of docking stations with an example
three-fold cover of the sphere. There are eight singularities in the origi-
nal 3-RoSy field, forming three connected components in the essential
cut graph: two groups of three positively-indexed singularities, and one
group of one positively-indexed singularity and one negatively-indexed
singularity. The docking station corresponding to the last group is
relatively simple (enclosed by the red box), which is topologically
three curves connecting two points that form three circular openings,
with each opening connected to a layer through a tube. The first two
groups each consists of three positively-indexed singularities, and their
docking stations (enclosed by the blue boxes) are more complex. There
are now three points in the docking station, representing the singu-
larities in the connected component. There are three curves between
the first and middle singularities on the cut graph, forming three holes
(one per layer). There are also three curves connecting the middle and
the last singularities, forming three other holes (again one per layer).
Our system correctly generates the docking stations for both types of
singularity groups for any arbitrary N-RoSy field.

5 VISUALIZATION OF BRANCHED COVERING SPACES

Given a geometric realization of the BCS, our system provides a number
of visualization options. Besides rendering the BCS as an opaque object
using photorealistic shading of the normal maps [24], we also enable
rendering of the BCS as translucent material using the dual depth
peeling technique [4]. In addition, we allow the user to see the N-RoSy
field on the original surface as well as the lifted vector field on the BCS
using the technique of Palacios and Zhang [19], which is adapted from
the original line integral convolution technique [7]. The texture can be
further made dynamic to provide a sense of flow on the BCS based on
the vector field.

These techniques can demonstrate important facts about the BCS,
such as that there are mostly N copies of the original surface except at
the ramification points and that the N-RoSy field is indeed lifted to a
vector field on the BCS (Figure 2).

6 INTERACTIVE DESIGN OF BRANCHED COVERING SPACES

While the topology of the BCS is unique given the input mesh and
the N-RoSy field defined on it, its geometric realizations in R3 form a
large space. Unlike existing method [16] which provides an automatic
method to generate the BCS, we provide an interactive design system
that allows the user to create different geometric realizations of the
BCSs.

At the very beginning, the user can modify the input N-RoSy field
including the number and location of the singularities in the field using
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On a high level, the four-step pipeline of our algorithm is similar to
that of Nieser et al. [16]. However, there are a number of differences
between the two approaches. Below we describe each step in detail
and highlight the difference between our approach and that of Nieser et
al. [16].

4.1 Essential Cut Graph Computation

Existing work in quad remeshing [6, 13] computes a cut graph G along
which the base surface S is cut into a topological disk. This is achieved
by region growing from a seed triangle, inside which a vector is selected
from the N-RoSy of the triangle. During the region growing process,
the chosen vector inside the seed triangle is parallel transported to the
rest of the triangles in the mesh, which is used to select a vector from
each of the remaining triangles to maximize vector field continuity
across the edges. The boundary of the region (a topological disk) is the
cut graph G, across which the selected vectors may not be consistent.
Figure 4 (top row) illustrates this with an example in which the best
match for the vector VA,0 from the triangle A is VB,1 in the triangle B.
The gap from A to B is 1 in this case, which means that during the
mesh stitching stage (Figure 4 (upper-right)), a duplicated triangle Ai is
stitched to Bi+1 mod 4. More precisely, the gap from a triangle A to an
adjacent triangle B is the j (0 ≤ j ≤ N−1) where VB, j is the best match
for VA,0. Existing work then computes the gap across edges in the cut
graph G. These algorithms then start the next stage of the pipeline, i.e.,
mesh cutting along the cut graph G. We observe that for the purpose of
BCS construction, it is unnecessary to cut the surface S along every edge
in G. This is because unlike quad meshing in which all cohomological
basis is needed, BCS construction only requires handles produced by
singularities in the field. Therefore, we only need to cut along the edges
in G where the gap is not zero. To see this, consider the example in the
bottom row of Figure 4. In this case Ai will be stitched with Bi, which
makes it unnecessary to cut the mesh open along the edge shared by

Fig. 3. Explanation of the construction process of branched covering
spaces.

Fig. 4. This figure illustrates the concept of gap and its use in deciding
how the layers are connected. In the left subfigure of the top row, the
chosen vectors (green) in triangles A and B are indexed 0. The gap
from A to B is 1 since the best matching vector in triangle B for VA,0 is
VB,1. Therefore, during the layer stitching stage (right in the top row), Ai
is stitched with Bi+1 mod 4. In contrast, the bottom row shows the case
when the gap from A to B is zero. In this case, Ai will be stitched with Bi.
Consequently, cutting the mesh open along the edge is unnecessary. We
remove edges with a zero gap from the cut graph to obtain an essential
cut graph, along which we cut the mesh open.

Fig. 5. The cut graph contains many edges over which the gap is 0
(black edges). The essential cut graph is a subgraph of the cut graph
that consists of only edges whose gap index is not zero (red).

A and B. We define an essential cut graph G′ to be a subgraph of a
cut graph G where only edges with a non-zero gap are kept. Figure 5
compares the cut graph and the essential cut graph with an example.
Essential cut graphs are minimal in the sense that removing any edge
from an essential cut graph will lead to a topologically incorrect BCS.
To extract the essential cut graph given a cut graph, we simply identify
all the edges in the cut graph with a non-zero gap. Note that cut graphs
are not unique given a surface and a RoSy field. Consequently, essential
cut graphs are also not unique. In Section 4.2.2, we will discuss how
the notion of essential cut graphs can be used to generate BCSs with
fewer self-intersections and provide a more geometrically intuitive
undertsanding behind the Riemann-Hurwitz formula.

Next we cut the mesh open along the essential cut graph computed in
the first stage and replicate the cut-open mesh N times. For a triangle in
the original mesh, its N-RoSy vectors are assigned to the corresponding
triangles in each duplicated layer based on the aforementioned layer
index. That is, the first vector is assigned to the triangle on the first
layer, and the second triangle to the second layer, and so on. This
results in a triangle mesh with N connected components and a vector
field. Our algorithm in these two steps (cutting and replication) does
not differ from existing work [16].

4.2 Layer Connection

In the last stage, we connect the N layers together to form the BCS.
Our system provides two options for this step.

The first option is the same as [16], which is essentially an inverse
process to the cutting stage except that there are more layers to stitch.
The layers are initially placed in the 3D space. Given an edge on the
original cut graph, the two triangles incident to the edge correspond

to 2N triangles in the replicated mesh. We will stitch triangle t1, j to
t2,L+ j mod N where L is the gap from triangle t1 to t2 and 0 ≤ j < N.
Once all the edges have been glued together, we remove redundant
vertices. This results in the BCS.

Note that stitching can introduce visual artifacts when the two lay-
ers to be stitched are relatively far apart. This is because the shared
vertices, regardless of their final locations, will lead to some triangle
with vertices located on both layers. While it is possible to place the
shared vertices in between the two layers, the problem can still be
visible. To remove such an artifact, ideally all the layers should be
co-located, i.e., each vertex in the BCS has the same 3D coordinates
as the corresponding vertex in the original input surface. However, in
this case the BCS is identical to the input surface visually since all the
layers are co-located.

To address these difficulties, we provide two approaches: mesh
deformation, and connecting tubes.

4.2.1 Layer Connection through Mesh Deformation
In the first approach, the user can use our BCS design system to place
the N layers anywhere in space with an arbitrary orientation and scal-
ing. Next, the edges along which stitching occurs are also placed in
space, usually between the layers. We then proceed to stitch the layers
along these edges. However, we wish to maintain the overall separation
among the layers while keeping their overall shape relatively unde-
formed so that they can be recognized as being similar to the base mesh
and to each other.

To achieve this, our system computes a set of triangles in the base
mesh that are relatively far away from the essential cut graph. These
triangles are usually obtained by first computing the distance of each
vertex in the base surface S to the essential cut graph and are selected
based on user-provided threshold. The corresponding triangles in the
layers will serve as hard constraints, along with the positions of the
edges corresponding to the essential cut graph. The positions of ver-
tices not defined by these hard constraints are then solved by Laplacian
smoothing [26] with the hard constraints serving as the boundary con-
dition.

The user can control the smoothness near the stitching by changing
the position and orientation of each layer, the position and orientation
of the edges to be stitched, and the number of triangles on each layer
that will serve as hard constraints.

4.2.2 Layer Connection with Connecting Tubes
While the mesh deformation approach can lead to high-quality BCSs,
such BCSs usually contain significant self-intersections which make
the understanding of the BCS structure rather challenging. We now
describe another approach which uses additional tubes to connect the
layers.

Recall that the topology of the BCS does not depend on the cut
graph. Consequently, given an N-RoSy field on the input surface, we
can generate an essential cut graph that facilitates our layer connection.
For educational purposes, we assume that no higher-order singularities
exist in the N-RoSy field, i.e. the index of every singularity is either
1
N or − 1

N . Let the Euler characteristic of the input surface be χ(S),
then the set of singularities in the N-RoSy field can be considered as
the disjoint union of two subsets. The first subset consists of |Nχ(S)|
singularities, each of which has an index of sign(χ(S)) 1

N . The second
set consists of 2M singularities (M ≥ 0), half of which have an index
of 1

N and the other half have an index of − 1
N .

Our algorithm allows the user to edit the essential cut graph that it can
not only shorten the total length of the edges in the essential cut graph
but also increase the connectivity of the cut graph so that it will have
|χ(S)|+M connected components. Each of the first |χ(S)| components
consists of N singularities from the first subset, while each of the
remaining M components consists of one positively-indexed singularity
and one negatively-indexed singularity from the second subset. In this
regard, the cut graph is further improved by connecting the singularity
pairs with curves on the mesh surface following a geodesic path [14].

For each of aforementioned connected components in the essential
cut graph, we will construct a docking station that is a terminal which

Fig. 6. An illustration of docking stations of different kinds. The docking
station highlighted in red on the left is a topological sphere to which the
tubes are connected. Others marked in blue are of higher genus.

helps in connecting the layers with tubes for each of the components of
the essential cut graph.

Figure 6 shows the two types of docking stations with an example
three-fold cover of the sphere. There are eight singularities in the origi-
nal 3-RoSy field, forming three connected components in the essential
cut graph: two groups of three positively-indexed singularities, and one
group of one positively-indexed singularity and one negatively-indexed
singularity. The docking station corresponding to the last group is
relatively simple (enclosed by the red box), which is topologically
three curves connecting two points that form three circular openings,
with each opening connected to a layer through a tube. The first two
groups each consists of three positively-indexed singularities, and their
docking stations (enclosed by the blue boxes) are more complex. There
are now three points in the docking station, representing the singu-
larities in the connected component. There are three curves between
the first and middle singularities on the cut graph, forming three holes
(one per layer). There are also three curves connecting the middle and
the last singularities, forming three other holes (again one per layer).
Our system correctly generates the docking stations for both types of
singularity groups for any arbitrary N-RoSy field.

5 VISUALIZATION OF BRANCHED COVERING SPACES

Given a geometric realization of the BCS, our system provides a number
of visualization options. Besides rendering the BCS as an opaque object
using photorealistic shading of the normal maps [24], we also enable
rendering of the BCS as translucent material using the dual depth
peeling technique [4]. In addition, we allow the user to see the N-RoSy
field on the original surface as well as the lifted vector field on the BCS
using the technique of Palacios and Zhang [19], which is adapted from
the original line integral convolution technique [7]. The texture can be
further made dynamic to provide a sense of flow on the BCS based on
the vector field.

These techniques can demonstrate important facts about the BCS,
such as that there are mostly N copies of the original surface except at
the ramification points and that the N-RoSy field is indeed lifted to a
vector field on the BCS (Figure 2).

6 INTERACTIVE DESIGN OF BRANCHED COVERING SPACES

While the topology of the BCS is unique given the input mesh and
the N-RoSy field defined on it, its geometric realizations in R3 form a
large space. Unlike existing method [16] which provides an automatic
method to generate the BCS, we provide an interactive design system
that allows the user to create different geometric realizations of the
BCSs.

At the very beginning, the user can modify the input N-RoSy field
including the number and location of the singularities in the field using
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Fig. 7. Our system allows the BCS to be deformed: (left) regions to
deformed (green) around the deformation handles (the purple triangles
enclosed by the red boxes which are located at the end of the green
parts of the surface), and (right) the deformed BCS.

the technique of Palacios and Zhang [18]. Next, the user can edit the
essential cut graph by replacing an edge in the graph with the other
two edges in the same triangle or two edges in the same triangle with
the third edge of a triangle. The gap for the newly added edges is
automatically computed. We support these operations even when some
of the involved vertices are singularities in the field, as long as no
singularity is removed from the essential cut graph.

Before layer connection, the user can specify the location, size,
and orientation of each layer. With mesh deformation, the user can
additionally specify the location and orientation of edges corresponding
to the essential cut graph as well as part of the layers that will not
deform. With connecting tubes, the user can specify the location, size,
and orientation of the docking stations.

After the BCS has been generated, the user can further improve the
geometric realization of the BCS.

When connecting tubes are used, the user has the option to deform
the path that each tube takes to improve the smoothness of the path, to
avoid collisions (intersection) with unrelated tubes, layers, and docking
stations, as well as to reduce visual cluttering caused by the tubes. The
construction of these curves is done by taking the strokes drawn by
the user on screen as inputs which are filtered and used as the control
points to draw Bezier curves [23].

In case connecting tubes are not used, i.e., layer connection is
achieved through Laplacian smoothing, geometric realization of the
BCS can be improved through mesh deformation.

During the deformation process, we strive to maintain the shape of
each layer in order to maintain their recognizability. To achieve this, we
reuse the framework of [25], which transfers the deformation from one
surface (source) to another (target). Given an initial pose of the source
mesh Ps,1 and the pose after deformation Ps,2, the framework seeks
to extract the deformation and apply it to the initial pose of the target
mesh Pt,1 to produce Pt,2. The vertex locations for Pt,2 are computed
by minimizing an energy function which is the total squared difference
between the deformation of every triangle in Ps,1 and its corresponding
triangle in Pt,1.

In our case, we do not have two meshes. Therefore, to apply the
framework, we let the user select a subset of triangles in the mesh
which can serve as the deformation handle. The user can translate and
rotate these triangles. The affine transformation from this subset of
triangles and the rest of the triangles in the mesh will be maintained
as much as possible during the deformation of the rest of the triangles.
This leads to a similar framework.

When deforming each layer, we automatically compute a seed in the
base mesh and use its pre-images in the BCS as the seed triangle for
each layer. Since the self-intersections occur most around singularities,
we wish to select a seed that is far away from the singularities in the base
mesh. Figure 7 shows an example BCS before and after deformation.
The seed triangles are enclosed in red boxes.

Fig. 8. An − 1
2 indexed singularity in the 2-RoSy field on the double torus

(left) corresponds to an −2 indexed singularity in the vector field in the
BCS (right).

7 ANIMATION

While the aforementioned visualization techniques can clearly show
that the BCS is mostly N copies of the input surface except at the
ramification points and that the N-RoSy field lifts to a vector field on
the BCS, there are other important properties of the BCS that cannot
yet be clearly demonstrated.

For example, the BCS is a manifold surface if the input surface
is a manifold. That is, the ramification point is a manifold point.
To address this, our system provides an operation that can take the
neighborhood of a ramification point in the BCS and unfold it onto a
hemisphere. The operation, which we term ramification point inflation,
is achieved through a process similar to the aforementioned mesh
deformation process. In this case, the user can specify a neighborhood
R of the ramification point and a hemisphere H in the 3D space, and
a correspondence between R and H is automatically established. This
leads to a shape interpolation between R and H. A large neighborhood
H ′ of H is then deformed to maintain the connectivity between the
deformed H and the rest of the BCS (see Figure 17 in Section A in the
supplementary material). This operation can show that the ramification
point is indeed a manifold point in the BCS.

The same operation, when rendered using the Line-Interval-
Convolutions (LIC) [7], can be used to show the connection between
the index of a singularity and the index of its corresponding ramifica-
tion point. In addition, we use LIC to show the relationship between a
singularity’s index Ip and the index of its corresponding ramification
point I′p, i.e., I′p = NIp − (N −1) as illustrated in Figure 8.

Our system provides an initial location, orientation, and scale of
the fully unfolded neighborhood. However, one can use our graphical
interface to modify these in order to achieve an animation of optimal
visualization. Please see the accompanying video for an example of
this editing.

The Riemann-Hurwitz formula states that there are usually more
handles in the BCS than N ×g, where g is the number of handles in the
input surface. When using mesh deformation based layer connection,
it is often difficult to see the additional handles as they are usually

Fig. 9. Two frames in the animation of inflating a handle that is otherwise
difficult to see due to the self-intersections in the BCS.

occluded due to self-intersections. To address this, we provide another
operation, termed handle inflation, which can take the part of a handle
and morph it to a cylinder, thus exposing the handle. To do so, we
compute a homology generator [9, 10] per handle in the BCS using
the technique from [30]. The homology generators are visualized on
the BCS. However, some handles are difficult to see due to the self-
intersections in the BCS. In this case, we allow the user to deform
the BCS in order to make the handle visible using the aforementioned
deformation framework. We then grow a topological cylinder from
the homology generator by performing region growing from the a
region of zero triangles and two boundaries (the homology generator is
treated as two co-locating boundaries). The region is grown by adding
one triangle at a time until a user-specified distance between the two
boundaries is reached. The topological cylinder is then mapped to a
canonical half torus (also a topological cylinder) of a user-given outer
and inner radii. This is achieved by finding a shortest path between the
two boundaries on the topological cylinder on the BCS and unfolding
it onto a rectangle such that the top and bottom sides correspond to
the shortest cut, and the left and right sides correspond to the two
boundaries of the cylinder. We ensure that each vertex on the shortest
path is mapped to two points on the top and bottom sides with the
same X-coordinates. The interior vertices are then solved using the
parameterization technique [24]. Since a mapping from a rectangle to a
half torus is known, we have now mapped the topological cylinder to
the half torus. Again, the user can choose to only see the topological
cylinder deforming into a half torus, i.e., disconnected from the rest
of the BCS, or deforming a transition region between the topological
cylinder and the fixed region on the BCS. The user can also change
the size of the topological cylinder, the transition region, as well as
the inner and outer radii, orientation, and location of the half torus.
Solid and translucent rendering as well as static and dynamic LIC are
used to see the deformation. Figure 9 shows intermediate results of the
animation.

8 THE RIEMANN-HURWITZ FORMULA AND RELATED PROPER-
TIES

The Riemann-Hurwitz formula is one of the most important properties
of the BCS as it relates the topology of the base mesh and that of the
BCS. In addition, the Riemann-Hurwitz formula leads to a number of
important additional properties of the BCS, such as that the BCS is
independent of how the mesh surface is cut open (i.e., the essential cut
graph) and that any closed, orientable surface with at least one handle
is a two-fold BCS for the sphere.

When being translated in terms of number of handles, the Riemann-
Hurwitz formula states that the number of handles in the BCS is N
times the number of handles in the base mesh with ( S

2 − 1)(N − 1)
handles. Here N is the degree of the RoSy field and S is the number of
singularities in the field. Here we assume that the only singularities in

the field are first-order, which is a common assumption in geometry
processing.

While handle inflation can help verify the existence of additional
handles in the BCS, it is difficult to build a geometric intuition on why
the additional handles are needed for a valid BCS. We demonstrate
this with a sequence of N-RoSy fields defined on the same surface so
that each N-RoSy field in the sequence has two additional singularities
than the preceding field. Figure 10 shows this where N = 2 and the
base mesh is a sphere. The first 2-RoSy field has four first-order
singularities, which is the minimum due to the Poincaré-Hopf theorem
(the Euler characteristic being two). Moving down, each field has two
more singularities (one positive-indexed and one negative-indexed so
that the total index remains the same). The right column shows the
corresponding BCSs. In the first row, the four singularities lead to two
connected components in the essential cutgraph. By connecting the two
layers with tubes, it is clear that each connected component leads to a
bridge between the corresponding singularity pairs on the two layers.
Therefore, there are two bridges between the layers, forming a new
handle. Note that this is consistent with the above translated version
of the Riemann-Hurwitz formula. Every time a new singularity pair
is added to the field, a new connected component is introduced into
the essential cut graph, thus a new bridge connecting the layers. This
bridge, in the presence of existing bridges, leads to a new handle.

Figure 11 shows the same geometric intuition behind the Riemann-
Hurwitz formula for higher-order RoSy fields. In this example, we
show the BCSs corresponding to two 2-RoSy fields (top), two 3-RoSy
fields (middle), and two 4-RoSy fields (bottom) on the torus. The fields
for the BCSs in the left have only two singularities while the ones for
the right have two additional singularities. Consequently, the BCSs
for the right have one more docking station connecting to the N layers
with bridges than the ones in the left. These additional N outgoing
bridges leads to N − 1 new handles, which is the consistent with the

Fig. 10. Four 2-RoSy fields defined on the sphere (left) and their corre-
sponding BCSs (right). From top to bottom, the 2-RoSy fields have four,
six, eight, and ten singularities, respectively. Their corresponding BCSs
have two, three, four, and five bridges, leading to respectively one, two,
three, and four handles. In addition, this figure shows that any closed,
orientable surface with at least one handle is a two-fold cover of the
sphere.
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Fig. 7. Our system allows the BCS to be deformed: (left) regions to
deformed (green) around the deformation handles (the purple triangles
enclosed by the red boxes which are located at the end of the green
parts of the surface), and (right) the deformed BCS.

the technique of Palacios and Zhang [18]. Next, the user can edit the
essential cut graph by replacing an edge in the graph with the other
two edges in the same triangle or two edges in the same triangle with
the third edge of a triangle. The gap for the newly added edges is
automatically computed. We support these operations even when some
of the involved vertices are singularities in the field, as long as no
singularity is removed from the essential cut graph.

Before layer connection, the user can specify the location, size,
and orientation of each layer. With mesh deformation, the user can
additionally specify the location and orientation of edges corresponding
to the essential cut graph as well as part of the layers that will not
deform. With connecting tubes, the user can specify the location, size,
and orientation of the docking stations.

After the BCS has been generated, the user can further improve the
geometric realization of the BCS.

When connecting tubes are used, the user has the option to deform
the path that each tube takes to improve the smoothness of the path, to
avoid collisions (intersection) with unrelated tubes, layers, and docking
stations, as well as to reduce visual cluttering caused by the tubes. The
construction of these curves is done by taking the strokes drawn by
the user on screen as inputs which are filtered and used as the control
points to draw Bezier curves [23].

In case connecting tubes are not used, i.e., layer connection is
achieved through Laplacian smoothing, geometric realization of the
BCS can be improved through mesh deformation.

During the deformation process, we strive to maintain the shape of
each layer in order to maintain their recognizability. To achieve this, we
reuse the framework of [25], which transfers the deformation from one
surface (source) to another (target). Given an initial pose of the source
mesh Ps,1 and the pose after deformation Ps,2, the framework seeks
to extract the deformation and apply it to the initial pose of the target
mesh Pt,1 to produce Pt,2. The vertex locations for Pt,2 are computed
by minimizing an energy function which is the total squared difference
between the deformation of every triangle in Ps,1 and its corresponding
triangle in Pt,1.

In our case, we do not have two meshes. Therefore, to apply the
framework, we let the user select a subset of triangles in the mesh
which can serve as the deformation handle. The user can translate and
rotate these triangles. The affine transformation from this subset of
triangles and the rest of the triangles in the mesh will be maintained
as much as possible during the deformation of the rest of the triangles.
This leads to a similar framework.

When deforming each layer, we automatically compute a seed in the
base mesh and use its pre-images in the BCS as the seed triangle for
each layer. Since the self-intersections occur most around singularities,
we wish to select a seed that is far away from the singularities in the base
mesh. Figure 7 shows an example BCS before and after deformation.
The seed triangles are enclosed in red boxes.

Fig. 8. An − 1
2 indexed singularity in the 2-RoSy field on the double torus

(left) corresponds to an −2 indexed singularity in the vector field in the
BCS (right).

7 ANIMATION

While the aforementioned visualization techniques can clearly show
that the BCS is mostly N copies of the input surface except at the
ramification points and that the N-RoSy field lifts to a vector field on
the BCS, there are other important properties of the BCS that cannot
yet be clearly demonstrated.

For example, the BCS is a manifold surface if the input surface
is a manifold. That is, the ramification point is a manifold point.
To address this, our system provides an operation that can take the
neighborhood of a ramification point in the BCS and unfold it onto a
hemisphere. The operation, which we term ramification point inflation,
is achieved through a process similar to the aforementioned mesh
deformation process. In this case, the user can specify a neighborhood
R of the ramification point and a hemisphere H in the 3D space, and
a correspondence between R and H is automatically established. This
leads to a shape interpolation between R and H. A large neighborhood
H ′ of H is then deformed to maintain the connectivity between the
deformed H and the rest of the BCS (see Figure 17 in Section A in the
supplementary material). This operation can show that the ramification
point is indeed a manifold point in the BCS.

The same operation, when rendered using the Line-Interval-
Convolutions (LIC) [7], can be used to show the connection between
the index of a singularity and the index of its corresponding ramifica-
tion point. In addition, we use LIC to show the relationship between a
singularity’s index Ip and the index of its corresponding ramification
point I′p, i.e., I′p = NIp − (N −1) as illustrated in Figure 8.

Our system provides an initial location, orientation, and scale of
the fully unfolded neighborhood. However, one can use our graphical
interface to modify these in order to achieve an animation of optimal
visualization. Please see the accompanying video for an example of
this editing.

The Riemann-Hurwitz formula states that there are usually more
handles in the BCS than N ×g, where g is the number of handles in the
input surface. When using mesh deformation based layer connection,
it is often difficult to see the additional handles as they are usually

Fig. 9. Two frames in the animation of inflating a handle that is otherwise
difficult to see due to the self-intersections in the BCS.

occluded due to self-intersections. To address this, we provide another
operation, termed handle inflation, which can take the part of a handle
and morph it to a cylinder, thus exposing the handle. To do so, we
compute a homology generator [9, 10] per handle in the BCS using
the technique from [30]. The homology generators are visualized on
the BCS. However, some handles are difficult to see due to the self-
intersections in the BCS. In this case, we allow the user to deform
the BCS in order to make the handle visible using the aforementioned
deformation framework. We then grow a topological cylinder from
the homology generator by performing region growing from the a
region of zero triangles and two boundaries (the homology generator is
treated as two co-locating boundaries). The region is grown by adding
one triangle at a time until a user-specified distance between the two
boundaries is reached. The topological cylinder is then mapped to a
canonical half torus (also a topological cylinder) of a user-given outer
and inner radii. This is achieved by finding a shortest path between the
two boundaries on the topological cylinder on the BCS and unfolding
it onto a rectangle such that the top and bottom sides correspond to
the shortest cut, and the left and right sides correspond to the two
boundaries of the cylinder. We ensure that each vertex on the shortest
path is mapped to two points on the top and bottom sides with the
same X-coordinates. The interior vertices are then solved using the
parameterization technique [24]. Since a mapping from a rectangle to a
half torus is known, we have now mapped the topological cylinder to
the half torus. Again, the user can choose to only see the topological
cylinder deforming into a half torus, i.e., disconnected from the rest
of the BCS, or deforming a transition region between the topological
cylinder and the fixed region on the BCS. The user can also change
the size of the topological cylinder, the transition region, as well as
the inner and outer radii, orientation, and location of the half torus.
Solid and translucent rendering as well as static and dynamic LIC are
used to see the deformation. Figure 9 shows intermediate results of the
animation.

8 THE RIEMANN-HURWITZ FORMULA AND RELATED PROPER-
TIES

The Riemann-Hurwitz formula is one of the most important properties
of the BCS as it relates the topology of the base mesh and that of the
BCS. In addition, the Riemann-Hurwitz formula leads to a number of
important additional properties of the BCS, such as that the BCS is
independent of how the mesh surface is cut open (i.e., the essential cut
graph) and that any closed, orientable surface with at least one handle
is a two-fold BCS for the sphere.

When being translated in terms of number of handles, the Riemann-
Hurwitz formula states that the number of handles in the BCS is N
times the number of handles in the base mesh with ( S

2 − 1)(N − 1)
handles. Here N is the degree of the RoSy field and S is the number of
singularities in the field. Here we assume that the only singularities in

the field are first-order, which is a common assumption in geometry
processing.

While handle inflation can help verify the existence of additional
handles in the BCS, it is difficult to build a geometric intuition on why
the additional handles are needed for a valid BCS. We demonstrate
this with a sequence of N-RoSy fields defined on the same surface so
that each N-RoSy field in the sequence has two additional singularities
than the preceding field. Figure 10 shows this where N = 2 and the
base mesh is a sphere. The first 2-RoSy field has four first-order
singularities, which is the minimum due to the Poincaré-Hopf theorem
(the Euler characteristic being two). Moving down, each field has two
more singularities (one positive-indexed and one negative-indexed so
that the total index remains the same). The right column shows the
corresponding BCSs. In the first row, the four singularities lead to two
connected components in the essential cutgraph. By connecting the two
layers with tubes, it is clear that each connected component leads to a
bridge between the corresponding singularity pairs on the two layers.
Therefore, there are two bridges between the layers, forming a new
handle. Note that this is consistent with the above translated version
of the Riemann-Hurwitz formula. Every time a new singularity pair
is added to the field, a new connected component is introduced into
the essential cut graph, thus a new bridge connecting the layers. This
bridge, in the presence of existing bridges, leads to a new handle.

Figure 11 shows the same geometric intuition behind the Riemann-
Hurwitz formula for higher-order RoSy fields. In this example, we
show the BCSs corresponding to two 2-RoSy fields (top), two 3-RoSy
fields (middle), and two 4-RoSy fields (bottom) on the torus. The fields
for the BCSs in the left have only two singularities while the ones for
the right have two additional singularities. Consequently, the BCSs
for the right have one more docking station connecting to the N layers
with bridges than the ones in the left. These additional N outgoing
bridges leads to N − 1 new handles, which is the consistent with the

Fig. 10. Four 2-RoSy fields defined on the sphere (left) and their corre-
sponding BCSs (right). From top to bottom, the 2-RoSy fields have four,
six, eight, and ten singularities, respectively. Their corresponding BCSs
have two, three, four, and five bridges, leading to respectively one, two,
three, and four handles. In addition, this figure shows that any closed,
orientable surface with at least one handle is a two-fold cover of the
sphere.
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Fig. 11. BCSs of the torus with one (left) and two (right) pairs of singu-
larities on the input N-RoSy field. From top to bottom, the BCS results
are from the fields of 2-RoSy, 3-RoSy and 4-RoSy respectively on the
input surface. These figures demonstrate the Riemann-Hurwitz formula
which says that with addition of a singularity pair on the N-RoSy field on
the input surface, N-1 handles are added in the resulting BCS.

Fig. 12. A 2-RoSy field on the torus with four singularities leads to
two different essential cut graphs (left). Their corresponding BCSs are
topologically equivalent (three handles).

Riemann-Hurwitz formula.
To verify that the BCS is independent of essential cut graph, our

system allows the user to edit the essential cut graph that can change
which singularities are in the same connected component (Figure 12).
Since the total number of singularities does not change when the essen-
tial cut graph is altered, the same number of bridges are formed, albeit
from different parts of the layers. This leads to the same BCSs in terms
of topological equivalence.

Finally, reading Figure 10 from right to left shows that any closed,
orientable manifold with at least one handle is a two-fold cover of the
sphere.

9 PERFORMANCE

Our tool has been tested on a system with Intel(R) Xeon(R) CPU
with 3.40 Ghz speed with a RAM of 64 GB and an NVidia Quadro
K420 graphics card. Our LIC and dual depth peeling methods are
implemented using the Shaders while the mesh deformation is achieved
on the CPU. The time to perform one step in mesh deformation depends
on the size of the input mesh and ranges from a few frames per second
(e.g., sphere, torus, double torus, which have up to 10,000 triangles) to
two seconds (e.g., buddha and higher resolution mesh with 10,000−
40,000 triangles). Our BCS visualization and design system is robust,
as demonstrated by Figure 18 (Section A in the supplementary material).
Note these results are not for educational purposes. The 2-RoSy field on
the torus (top) has 704 singularities, leading to a BCS with 353 handles.

The budda model is complex both geometrically and topologically (six
handles), and the 20-RoSy field leads to a BCS with 9202 handles.
Figure 1 (right) shows a 100-fold cover of the double torus, which has
21188 handles. Our system is able to construct and visualize these BCS
meshes.

10 EVALUATION

Branched covering spaces is a concept in Topology that is often taught
at the graduate level in Mathematics. Moreover, it is usually taught
with simple illustrations.

To evaluate the effectiveness of our interactive and design system,
we have conducted a user study with 75 participants, including three
professors in mathematics who teach topology regularly, 7 math stu-
dents, 22 computer science students, and 43 high school students who
either have taken or are taking AP Calculus. Among the participants,
15 (including the three mathematics faculty members) chose to use
our system instead of seeing a presentation that we prepared with our
tool. The presentation is 35 minutes long, while the participants us-
ing our system did so in 45 minutes. At the end of the study, each
participant filled a survey which includes three parts: (1) background
information such as level (high school, university, faculty) and major,
(2) the participant’s evaluation of the effectiveness of our visualization
system in terms of a seven branched covering space properties, and (3)
suggestions and comments. The seven properties are:

• Q1: N-fold branched cover consists of N layers.

• Q2: BCS lifts an N-RoSy field to a vector field.

• Q3: BCS is a manifold, even around the singularities.

• Q4: The Riemann-Hurwitz formula.

• Q5: BCS is independent of cut graph.

• Q6: Any closed, orientable surface with at least one handle is a
two-fold branched cover of a sphere.

• Q7: Index of the ramification point in the BCS relates to the index
of the corresponding singularity in the N-RoSy field.

For each property, the participant was asked whether he/she thinks
our visualization technique is effective in demonstrating the property.
The rating system is: agree (3), neutral (2), and disagree (1).

Figures 13, 14, and 15 show the user study results by the high school
students, computer science university students, and math university
students, respectively. Figure 16 provides the result of the evaluation
by the users who used our system, including the three math faculty
members regularly teaching topology.

As shown in the results, the overall evaluation is positive and encour-
aging. We observe that the participants who chose to use our system
in general had a higher rating of our visualization system than the
participants who attended our presentation only. On the other hand,
our visualization system is rated similarly among high school students,
computer science university students, and math university students.
Both the researchers on this project (research areas covering tensor
field topology and quad-remeshing) and the math faculty participants
agreed that three of the most essential tasks for BCS visualization
are: (1) showing that the BCS is a manifold surface, (2) highlighting
that the BCS is N copies of the original surface, and (3) demonstrat-
ing the relationship between the topology of the BCS and that of the
original surface, i.e., the Riemann-Hurwitz formula. Regarding the ef-
fectiveness of our visualization techniques in terms of these tasks, most
participants agreed that the tube-based visualization is more useful in
showing the topology of the BCSs (being a manifold and satisfying the
Riemann-Hurwitz formula). The non-tube based visualization is better
in demonstrating that the BCS is exactly N copies of the base surface
stitched together since no additional surfaces (tubes) are needed. All
three mathematics faculty members stated in their comments that our
design system can facilitate teaching topology and inspire new ideas in
their research.

Fig. 13. Evaluation of effectiveness of our system on a scale of 1 to 3 (1
= not effective, 2 = neutral and 3 = effective) to understand key properties
of BCS by high school students.

Fig. 14. Evaluation of effectiveness our system on a scale of 1 to 3 (1 =
not effective, 2 = neutral and 3 = effective) to understand key properties
of BCS by undergraduate and graduate computer science students.

11 CONCLUSION

In this paper, we describe an interactive design and visualization sys-
tem for the BCS of a manifold surface. With various visualization,
mesh deformation, and visualization techniques, our system allows a
user to build intuitions on important properties of the BCS, such as
its construction, the connection between the indices of a singularity
and its corresponding ramification point, and the Riemann-Hurwitz
formula. As part of our system, we introduce the notion of essential
cut graph, which not only leads to improved efficiency in constructing
the BCS, but also enables the use of docking stations that help reduce
self-intersections in the BCSs.

Our system is not without limitations. When N is large, there are
usually a large number of singularities in the N-RoSy field, leading
to many connecting tubes which require a significant amount of user
effort to generate a visually pleasing BCS. This can also happen when
the input surface or the field has relatively complex topology. Visual
cluttering often occurs as a result. To address these issues, we plan
to explore automatic placement of the docking stations, layers and
connecting tubes to improve the aesthetic of the BCS before any editing.
In addition, we will investigate operations to bundle the tubes or handles
in BCSs similar to edge bundling [31]. We also plan to add highlighting
and filtering capabilities to our system.

Enhancing the visualization of the topological and geometric struc-
tures of docking stations provides a future research avenue. For ex-
ample, instead of representing docking stations always as a sphere
with holes, we will explore situations under which docking stations are
better represented as a torus to which tubes are attached.

When connecting tubes are not used, a large amount of self-
intersections usually occur and mesh deformation is needed to reduce
the amount of self-overlaps. We wish to investigate automatic deforma-
tion strategies to optimize the shape of BCSs with minimal distortion

Fig. 15. Evaluation of effectiveness our system on a scale of 1 to 3 (1 =
not effective, 2 = neutral and 3 = effective) to understand key properties
of BCS by undergraduate and graduate mathematics students.

Fig. 16. Evaluation of effectiveness our system on a scale of 1 to 3 (1 =
not effective, 2 = neutral and 3 = effective) to understand key properties
of BCS by the users who interacted with our system.

and self-intersections. In addition, we plan to explore the use of regular
texture patterns on BCSs to more clearly show the connection among
different layers. Generating animations for ramification point inflation
and handle inflation without moving the self-intersections is also a
promising future research direction.

In this paper we have focused on fields with only first-order singular-
ities. In the future, we wish to extend our system to handle higher-order
singularities in the input fields. Constructing and visualizing BCSs
for non-orientable surfaces such as the real projective space and the
Klein bottle is of great interest to us. While visualizing BCSs for two-
dimensional surfaces can be useful for researchers in quad remeshing,
we plan to extend this work to visualize BCSs for volumetric frame
fields. Finally, we will explore the use of our system for educational
purposes.
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Fig. 11. BCSs of the torus with one (left) and two (right) pairs of singu-
larities on the input N-RoSy field. From top to bottom, the BCS results
are from the fields of 2-RoSy, 3-RoSy and 4-RoSy respectively on the
input surface. These figures demonstrate the Riemann-Hurwitz formula
which says that with addition of a singularity pair on the N-RoSy field on
the input surface, N-1 handles are added in the resulting BCS.

Fig. 12. A 2-RoSy field on the torus with four singularities leads to
two different essential cut graphs (left). Their corresponding BCSs are
topologically equivalent (three handles).

Riemann-Hurwitz formula.
To verify that the BCS is independent of essential cut graph, our

system allows the user to edit the essential cut graph that can change
which singularities are in the same connected component (Figure 12).
Since the total number of singularities does not change when the essen-
tial cut graph is altered, the same number of bridges are formed, albeit
from different parts of the layers. This leads to the same BCSs in terms
of topological equivalence.

Finally, reading Figure 10 from right to left shows that any closed,
orientable manifold with at least one handle is a two-fold cover of the
sphere.

9 PERFORMANCE

Our tool has been tested on a system with Intel(R) Xeon(R) CPU
with 3.40 Ghz speed with a RAM of 64 GB and an NVidia Quadro
K420 graphics card. Our LIC and dual depth peeling methods are
implemented using the Shaders while the mesh deformation is achieved
on the CPU. The time to perform one step in mesh deformation depends
on the size of the input mesh and ranges from a few frames per second
(e.g., sphere, torus, double torus, which have up to 10,000 triangles) to
two seconds (e.g., buddha and higher resolution mesh with 10,000−
40,000 triangles). Our BCS visualization and design system is robust,
as demonstrated by Figure 18 (Section A in the supplementary material).
Note these results are not for educational purposes. The 2-RoSy field on
the torus (top) has 704 singularities, leading to a BCS with 353 handles.

The budda model is complex both geometrically and topologically (six
handles), and the 20-RoSy field leads to a BCS with 9202 handles.
Figure 1 (right) shows a 100-fold cover of the double torus, which has
21188 handles. Our system is able to construct and visualize these BCS
meshes.

10 EVALUATION

Branched covering spaces is a concept in Topology that is often taught
at the graduate level in Mathematics. Moreover, it is usually taught
with simple illustrations.

To evaluate the effectiveness of our interactive and design system,
we have conducted a user study with 75 participants, including three
professors in mathematics who teach topology regularly, 7 math stu-
dents, 22 computer science students, and 43 high school students who
either have taken or are taking AP Calculus. Among the participants,
15 (including the three mathematics faculty members) chose to use
our system instead of seeing a presentation that we prepared with our
tool. The presentation is 35 minutes long, while the participants us-
ing our system did so in 45 minutes. At the end of the study, each
participant filled a survey which includes three parts: (1) background
information such as level (high school, university, faculty) and major,
(2) the participant’s evaluation of the effectiveness of our visualization
system in terms of a seven branched covering space properties, and (3)
suggestions and comments. The seven properties are:

• Q1: N-fold branched cover consists of N layers.

• Q2: BCS lifts an N-RoSy field to a vector field.

• Q3: BCS is a manifold, even around the singularities.

• Q4: The Riemann-Hurwitz formula.

• Q5: BCS is independent of cut graph.

• Q6: Any closed, orientable surface with at least one handle is a
two-fold branched cover of a sphere.

• Q7: Index of the ramification point in the BCS relates to the index
of the corresponding singularity in the N-RoSy field.

For each property, the participant was asked whether he/she thinks
our visualization technique is effective in demonstrating the property.
The rating system is: agree (3), neutral (2), and disagree (1).

Figures 13, 14, and 15 show the user study results by the high school
students, computer science university students, and math university
students, respectively. Figure 16 provides the result of the evaluation
by the users who used our system, including the three math faculty
members regularly teaching topology.

As shown in the results, the overall evaluation is positive and encour-
aging. We observe that the participants who chose to use our system
in general had a higher rating of our visualization system than the
participants who attended our presentation only. On the other hand,
our visualization system is rated similarly among high school students,
computer science university students, and math university students.
Both the researchers on this project (research areas covering tensor
field topology and quad-remeshing) and the math faculty participants
agreed that three of the most essential tasks for BCS visualization
are: (1) showing that the BCS is a manifold surface, (2) highlighting
that the BCS is N copies of the original surface, and (3) demonstrat-
ing the relationship between the topology of the BCS and that of the
original surface, i.e., the Riemann-Hurwitz formula. Regarding the ef-
fectiveness of our visualization techniques in terms of these tasks, most
participants agreed that the tube-based visualization is more useful in
showing the topology of the BCSs (being a manifold and satisfying the
Riemann-Hurwitz formula). The non-tube based visualization is better
in demonstrating that the BCS is exactly N copies of the base surface
stitched together since no additional surfaces (tubes) are needed. All
three mathematics faculty members stated in their comments that our
design system can facilitate teaching topology and inspire new ideas in
their research.

Fig. 13. Evaluation of effectiveness of our system on a scale of 1 to 3 (1
= not effective, 2 = neutral and 3 = effective) to understand key properties
of BCS by high school students.

Fig. 14. Evaluation of effectiveness our system on a scale of 1 to 3 (1 =
not effective, 2 = neutral and 3 = effective) to understand key properties
of BCS by undergraduate and graduate computer science students.

11 CONCLUSION

In this paper, we describe an interactive design and visualization sys-
tem for the BCS of a manifold surface. With various visualization,
mesh deformation, and visualization techniques, our system allows a
user to build intuitions on important properties of the BCS, such as
its construction, the connection between the indices of a singularity
and its corresponding ramification point, and the Riemann-Hurwitz
formula. As part of our system, we introduce the notion of essential
cut graph, which not only leads to improved efficiency in constructing
the BCS, but also enables the use of docking stations that help reduce
self-intersections in the BCSs.

Our system is not without limitations. When N is large, there are
usually a large number of singularities in the N-RoSy field, leading
to many connecting tubes which require a significant amount of user
effort to generate a visually pleasing BCS. This can also happen when
the input surface or the field has relatively complex topology. Visual
cluttering often occurs as a result. To address these issues, we plan
to explore automatic placement of the docking stations, layers and
connecting tubes to improve the aesthetic of the BCS before any editing.
In addition, we will investigate operations to bundle the tubes or handles
in BCSs similar to edge bundling [31]. We also plan to add highlighting
and filtering capabilities to our system.

Enhancing the visualization of the topological and geometric struc-
tures of docking stations provides a future research avenue. For ex-
ample, instead of representing docking stations always as a sphere
with holes, we will explore situations under which docking stations are
better represented as a torus to which tubes are attached.

When connecting tubes are not used, a large amount of self-
intersections usually occur and mesh deformation is needed to reduce
the amount of self-overlaps. We wish to investigate automatic deforma-
tion strategies to optimize the shape of BCSs with minimal distortion

Fig. 15. Evaluation of effectiveness our system on a scale of 1 to 3 (1 =
not effective, 2 = neutral and 3 = effective) to understand key properties
of BCS by undergraduate and graduate mathematics students.

Fig. 16. Evaluation of effectiveness our system on a scale of 1 to 3 (1 =
not effective, 2 = neutral and 3 = effective) to understand key properties
of BCS by the users who interacted with our system.

and self-intersections. In addition, we plan to explore the use of regular
texture patterns on BCSs to more clearly show the connection among
different layers. Generating animations for ramification point inflation
and handle inflation without moving the self-intersections is also a
promising future research direction.

In this paper we have focused on fields with only first-order singular-
ities. In the future, we wish to extend our system to handle higher-order
singularities in the input fields. Constructing and visualizing BCSs
for non-orientable surfaces such as the real projective space and the
Klein bottle is of great interest to us. While visualizing BCSs for two-
dimensional surfaces can be useful for researchers in quad remeshing,
we plan to extend this work to visualize BCSs for volumetric frame
fields. Finally, we will explore the use of our system for educational
purposes.
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[29] M. Valı́ková and P. Chalmovianský. Visualisation of complex functions
on riemann sphere. The Visual Computer, 31(2):141–154, 2015. doi: 10.
1007/s00371-014-0928-3

[30] E. Zhang, K. Mischaikow, and G. Turk. Feature-based surface parameteri-
zation and texture mapping. ACM Trans. Graph., 24(1):1–27, Jan. 2005.
doi: 10.1145/1037957.1037958

[31] H. Zhou, P. Xu, X. Yuan, and H. Qu. Edge bundling in information
visualization. Tsinghua Science and Technology, 18(2):145–156, 2013.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 11,2020 at 19:38:54 UTC from IEEE Xplore.  Restrictions apply. 


